Sharing the wealth: peroxisome inheritance in budding yeast.

نویسندگان

  • Monica Fagarasanu
  • Andrei Fagarasanu
  • Richard A Rachubinski
چکیده

Eukaryotic cells have evolved molecular mechanisms to ensure the faithful partitioning of cellular components during cell division. The budding yeast Saccharomyces cerevisiae has to actively deliver about half of its organelles to the growing bud, while retaining the remaining organelles in the mother cell. Until lately, little was known about the inheritance of peroxisomes. Recent studies have identified the peroxisomal proteins Inp1p and Inp2p as two key regulators of peroxisome inheritance that perform antagonistic functions. Inp1p is required for the retention of peroxisomes in mother cells, whereas Inp2p promotes the bud-directed movement of these organelles. Inp1p anchors peroxisomes to the cell cortex by interacting with specific structures lining the cell periphery. On the other hand, Inp2p functions as the peroxisome-specific receptor for the class V myosin, Myo2p, thereby linking peroxisomes to the translocation machinery that propels peroxisome movement. Tight coordination between Inp1p and Inp2p ensures a fair and harmonious spatial segregation of peroxisomes upon cell division.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conserved function for Inp2 in peroxisome inheritance.

In budding yeast Saccharomyces cerevisiae, the peroxisomal protein Inp2 is required for inheritance of peroxisomes to the bud, by connecting the organelles to the motor protein Myo2 and the actin cytoskeleton. Recent data suggested that the function of Inp2 may not be conserved in other yeast species. Using in silico analyses we have identified a weakly conserved Inp2-related protein in 18 spec...

متن کامل

Sharing the cell's bounty - organelle inheritance in yeast.

Eukaryotic cells replicate and partition their organelles between the mother cell and the daughter cell at cytokinesis. Polarized cells, notably the budding yeast Saccharomyces cerevisiae, are well suited for the study of organelle inheritance, as they facilitate an experimental dissection of organelle transport and retention processes. Much progress has been made in defining the molecular play...

متن کامل

Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p.

During budding of yeast cells peroxisomes are distributed over mother cell and bud, a process that involves the myosin motor protein Myo2p and the peroxisomal membrane protein Inp2p. Here, we show that Pex19p, a peroxin implicated in targeting and complex formation of peroxisomal membrane proteins, also plays a role in peroxisome partitioning. Binding studies revealed that Pex19p interacts with...

متن کامل

RhoA Regulates Peroxisome Association to Microtubules and the Actin Cytoskeleton

The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. ...

متن کامل

Mitochondrial network size scaling in budding yeast.

Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria-to-cell size ratio continually decreased in aging moth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1763 12  شماره 

صفحات  -

تاریخ انتشار 2006